Техносфера — физико-географическая среда, преобразованная человеком и предельно насыщенная продуктами человеческой деятельности.

Микромир

Разум побеждает: Рассказывают ученые - i_040.png

I. В глубины вещества

«Странный» мир

В этой главе мы познакомимся с некоторыми достижениями одной из наиболее фундаментальных областей современного естествознания — физики микромира, занимающейся изучением строения материи на уровне микропроцессов — атомов, атомных ядер и элементарных частиц.

Пожалуй, нет другой области науки, где бы с такой отчетливостью и убедительностью происходила периодическая смена представлений, где бы «привычное» постоянно уступало место «непривычному», иногда весьма странному, где бы углубление знаний неуклонно вело ко все большему отходу от «наглядного», к отрыву от непосредственно окружающей нас реальности и где бы, несмотря на все это, неизменно умножалось число все более кардинальных практических приложений. По существу, вся короткая история атомной физики и физики элементарных частиц — сплошная цепь удивительных открытий.

По мере все более глубокого проникновения в тайны строения материи физика неоднократно сталкивалась с явлениями, которые вначале казались исключительными, парадоксальными. Например, теория относительности А. Эйнштейна показала, что с увеличением скорости масса тел не остается неизменной, а растет, что не существует единого времени — его течение происходит по-разному в различных материальных системах, движущихся относительно друг друга.

С не менее удивительными фактами столкнулась и атомная физика. В частности, выяснилось, что в области так называемых молекулярно-атомных процессов, характеризующейся пространственно-временными интервалами 10–6–10–11 см и 10–17–10–22 секунды, невозможно одновременно точно определить скорость движения микрочастицы и ее положение в пространстве (так называемый принцип неопределенности). Таким образом, оказалось, что движение микрочастиц (например, электронов в атомах) существенным образом отличается от движения обычных макроскопических тел, которые всегда в тот или иной определенный момент занимают вполне определенное положение в пространстве и обладают вполне определенной скоростью.

Тем самым уже на одном из начальных этапов проникновения в микромир обнаружилось, что привычные понятия классической механики не только не могут быть автоматически перенесены на микроявления, но и совершенно недостаточны для их описания.

Проникновение в тайны строения атомов потребовало экспериментов с энергиями от нескольких электрон-вольт до сотен тысяч электрон-вольт. Когда же были достигнуты еще более высокие энергии — до сотен миллионов и, наконец, миллиардов электрон-вольт, — то оказалось, что при таких энергиях поведение микрочастиц отличается уже не только от поведения макроскопических тел, но и от поведения элементарных частиц в обычных условиях, например электронов в атомах.

Было обнаружено, что при достижении определенного, достаточно высокого уровня энергии начинаются сложные взаимопревращения частиц. Частицы одних типов превращаются в частицы других типов.

В течение последних десятилетий эта область науки бурно прогрессировала. Еще какие-нибудь 20 лет назад физикам было известно всего около десятка элементарных частиц и казалось, что именно из этих частиц и состоят все объекты окружающего нас мира. Но затем благодаря введению в строй гигантских ускорителей и применению электронно-вычислительной техники было открыто множество новых частиц, и сейчас их число измеряется сотнями.

На первых порах мир элементарных частиц казался разрозненным — в нем трудно было усмотреть общие закономерности, связывающие различные частицы между собой. Однако в результате усилий сначала экспериментаторов, а затем и теоретиков удалось обнаружить некоторые закономерности, позволяющие систематизировать элементарные частицы и построить их классификацию, подобную периодической системе Менделеева. И подобно тому как система Менделеева позволила предсказать существование неизвестных химических элементов, система элементарных частиц, построенная физиками, дала возможность предсказывать новые неизвестные явления, открывать новые частицы с весьма необычными свойствами.

Теория элементарных частиц наряду с астрофизикой всегда играла чрезвычайно важную роль в формировании новых представлений о явлениях окружающего нас мира. В частности, современная теория элементарных частиц не только знакомит нас со все новыми и новыми объектами, но и подводит к новым представлениям о том, что такое элементарность. Еще сравнительно недавно считалось само собой разумеющимся, что Вселенная представляет собой последовательность вложенных друг в друга физических систем — от Метагалактики до неделимых элементарных частиц, не имеющих внутренней структуры. Подобная картина хорошо согласовывалась и с нашим повседневным здравым смыслом, согласно которому целое всегда больше и сложнее любой из составляющих его частей.

Но теперь мы знаем, что элементарная частица может содержать в качестве своих составных частей несколько точно таких же частиц, как и она сама. Так, протон на очень короткое время распадается на протон и пи-мезон, а каждый пи-мезон — на три пи-мезона. Таким образом, в микромире теряют смысл привычные представления о целом и части, а следовательно, теряет смысл и привычное для нас представление об элементарности.

Эти новые представления, разумеется, весьма необычны. Но в том, что по мере проникновения в тайны микроявлений подобные необычные представления возникают, нет ничего неожиданного. Теория элементарных частиц по мере своего развития ведет нас в глубины «все более странного мира», к открытию все более необычных, диковинных явлений. Но еще В. И. Ленин подчеркивал, что открытие диковинных явлений — «это только лишнее подтверждение диалектического материализма» [20] .

Казалось бы, развитие физики, и в первую очередь тех ее разделов, которые изучают строение материи, должно «автоматически» служить укреплению атеизма, подрывать позиции религии.

Однако в действительности все обстоит значительно сложнее. Когда воздвигнутая классической физикой стройная картина, в которой все было строго определено и не оставалось места для каких-либо сверхъестественных сил, уступила место более глубокой, но зато и более сложной картине, «нарисованной» физикой XX столетия, теоретики богословия заметно оживились. Из революции, совершившейся в физике, они постарались сделать нужные им выводы: если классическая физика, отрицавшая идею бога, оказалась несостоятельной, значит, несостоятельны вообще любые попытки отрицать существование бога с точки зрения науки.

Как известно, в процессе становления новой физики выяснилось, что применение физических понятий за границами их применяемости неизбежно ведет к неполному и даже неверному описанию реальной действительности. Следовательно, в природе всегда существует некоторый круг явлений, описание которых остается за пределами возможностей современной науки. По-своему толкуя это бесспорное обстоятельство, теологи сделали вывод о том, что существует и такая область, в которую науке не удастся проникнуть никогда, — область сверхъестественного.

«У науки есть свои пределы… — утверждал известный теоретик православия митрополит Николай. — Но есть другая область, область другого, особого знания — это область веры» [21] .«…Откровение вступает в действие там, где наука теряет возможность что-либо объяснить», — провозглашает, например, один из видных теоретиков современной католической церкви, епископ О. Шпюльбек.

Однако все разговоры о пределах, о том, что за этими пределами будто бы исчезает материя, что существуют нематериальные, сверхъестественные силы, лишены какого бы то ни было основания. Конечно, возможность ссылаться на «нечто», что недоступно пока научному объяснению, у богословов сохранится всегда. Но может ли факт существования явлений, еще не познанных, служить сколько-нибудь серьезным аргументом в пользу религии?